Questions? Comments? Concerns?
Please contact:
Randy Ball, primary water operator
(208) 826-3209
cityer@turbonet.com.

Thank you for being a valued member of our drinking water system!

The City of Elk River is a resource for the protection and care of your drinking water. Your water payments are what ensures we are able to help achieve our shared goals of water quality.

We could not do it without you!

City of Elk River

PWS ID: 2180013

Population served: 165

Number of Service Connections: 171

Elk River CCR Consumer Confidence Report 2019

The City of Elk River routinely monitors for contaminants in your drinking water in accordance with federal and state regulations. At low levels, these substances are generally not harmful in our drinking water. The following report shows the detection of the following contaminants in your drinking water for the period of January 1, 2019 through December 31, 2019.

CONTAMINANT TABLE							
Contaminant	Violation (Y/N)	MCL	MCLG	Lowest Level Detected	Highest Level Detected	Year Tested	Typical Sources of Contamination
INORGANIC CONTAMINANTS							
Arsenic (ppb)	N	10	0	N/A	1	2019	Erosion of natural deposits; runoff from glass/electronic production wastes, orchards
Barium (ppm)	N	2	2	0.012	0.045	2019	Discharge of drilling wastes, from metal refineries; erosion of natural deposits
Chromium (ppb)	N	100	100	0	2	2019	Discharge from steel and pulp mills; Erosion of natural deposits
Copper (ppm)	N	1.3 (AL)	1.3	N/A	0.264	2019	Corrosion of household plumbing; erosion of natural deposits
Fluoride (ppm)	N	4	4	0	1.02	2019	Erosion of natural deposits; water additive; discharge from fertilizer/aluminum factories
Lead (ppb)	N	15 (AL)	0	N/A	8	2019	Corrosion of household plumbing; erosion of natural deposits
RADIOACTIVE CONTAMINANTS							
Alpha Emit- ters (pCi/L)	N	15	0	0.272	6.08	2017	Erosion of natural deposits
Radium [226/228] (pCi/L)	N	5	0	N/A	0.24	2019	Erosion of natural deposits
DISINFECTANTS & DISINFECTION BY-PRODUCTS							
Chlorine (ppm)	N	4	4	0.02	2	2019	Water additive to control microbes
HAA5 (ppb)	N	60	N/A	0	47	2019	By-product of chlorination
TTHMs (ppb)	N	80	N/A	1.31	109	2019	By-product of disinfection
MICROBIOLOGICAL CONTAMINANTS							
Turbidity (NTU)	N	0.3	N/A	0.10	1.0	Highest detect 12/11	Soil runoff

TTHMs: Our system had one sample above the maximum level of TTHMs. Water from both wells are blended together before distribution, bringing that level down to well within safe levels.

Why Are There Contaminants in My Drinking Water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, as well as picking up substances from human or animal activity. EPA enforces limits on the amount of certain contaminants in public water systems.

The City of Elk River supplies drinking water from three sources: Elk Creek, the North Well, and the South Well.

Drinking Water Health Standards

<u>AL (Action Level):</u> The concentration of a contaminant which, when exceeded, triggers treatment or other requirements.

MCL (Maximum Contaminant Level): The highest level of a contaminant allowed in

drinking water.

MCLG (Maximum Contaminant Level Goal): level of a contaminant in drinking water below which there is no known or expected health risk.

TT (Treatment Technique): a required process to reduce the level of a contaminant in drinking water

Potential Source Water Contaminants

Drinking water is reasonably expected to contain at least small amounts of some contaminants. This does not necessarily mean the water poses a risk.

Microbial contaminants: viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants: includes salts and metals, which can be naturally-occurring or result from urban storm water runoff. industrial/domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides: may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants: synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants: can be naturally-occurring or be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling EPA's Safe Drinking Water Hotline at 1-800-426-4791, or at its website, www.epa.gov/safewater/hotline/.

Contaminant Table Units of Measurement

Parts per million (ppm): One part per million corresponds to one penny in \$10,000

Parts per billion (ppb): One part per billion corresponds to one second in 2,000 years

Picocuries per liter (pCi/L): a measurement of radioactivity per liter of water

Nephelometric Turbidity Units: a measurement of cloudiness in water

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk, and should seek advice about drinking water from their health care providers.

Additional Information for Arsenic

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. You can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.